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Abstract. Within a strong-coupling perturbative approach, based on a Cumulant Expansion of the ex-
tended single-band Hubbard model, we show that the on-shell inverse scattering time deviates from the
normal Fermi-liquid behavior near the points of the Fermi surface connected by the characteristic wave-
vector of an incommensurate charge density wave. The violation of the Fermi liquid behavior is associated
with a square root behavior of the inverse quasiparticle lifetime in proximity of a stripe phase. Some
relevant features observed in ARPES experiments on Bi2212 are qualitatively reproduced.

PACS. 74.20.-z Theories and models of superconducting state – 71.45.Lr Charge-density-wave systems –
71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems

1 Introduction

Understanding transport in the cuprates superconductors
is one of the central issue in solid state physics. Many ex-
perimental results obtained by different techniques, as an-
gle resolved photoemission (ARPES) and neutron diffrac-
tion (NMR), have shown that the normal state of the
high temperature superconductors (HTS) is not a con-
ventional Fermi liquid [2]. Signatures of a Fermi liquid
behavior are observed in the heavily overdoped cuprates,
while deviations from the standard Fermi liquid emerge
at lower doping. Near optimal doping the non-Fermi liq-
uid behavior is characterized by a 1/ω conductivity [3]
and a linear T resistivity [4,5]. Furthermore, in this re-
gion various experiments highlight the formation of local,
self-organized quasi-one-dimensional structures, “stripes”,
which substantially affect low-energy excitations [6–9].
Two characteristic features that emerge in ARPES ex-
periments on optimally doped Bi2Sr2CaCu2O8+δ (Bi2212)
are a linear behavior of the inverse lifetime at the Fermi
level over a wide range of temperature [1] and an asym-
metric suppression of the spectral weight at the points
of the Fermi surface connected by an incommensurate
wavevector Qc = (0.4π/a,−0.4π/a) [10,11], interpretable
as a signature of quasi-critical charge fluctuations close
to a stripe phase. From these findings, arises the spec-
ulation that the elementary excitations in this material
might be drastically different from those in traditional
metals where the Fermi liquid theory has proved most suc-
cessful [2]. To explain both the observed linearities in the
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transport properties [12–14] and the origin of the stripe
phase near optimal doping [15,16], different scenarios have
been proposed. A common idea is that the origin of non-
Fermi-liquid (NFL) behavior is related to the presence of a
quantum critical point (QCP) [17] at optimal doping, i.e.
a phase transition at zero temperature driven by quantum
fluctuations of some kind (charge, spin, etc.) rather than
thermal fluctuations. The possibility of a quantum criti-
cal behavior has recently been discussed in several models
of high-Tc superconductivity [12,16]. One possible real-
ization of this scenario is based on an incommensurate
charge-density-wave (ICDW) instability that gives rise to
a singularity in the effective scattering amplitude among
quasiparticles near the Fermi surface (FS) [16]. Assum-
ing the possibility of a singular scattering, various exper-
imental results were explained [18] in a phenomenological
model of fermions coupled to a charge vertex, as the linear-
in-T resistivity and the presence of shadow-bands in the
single-particle spectra of Bi2212.

In this paper, we present a microscopic analysis of
quasiparticles lifetime in the stripe-phase of the 2D single-
band Hubbard model generalized with the inclusion of
a non-local (long-range) Coulomb interaction, to under-
stand the role of critical charge fluctuations on the de-
viation from Fermi liquid behavior observed into experi-
ments. Employing a strong-coupling approach based on a
Cumulant Expansion (CE), we derive an analytic expres-
sion for the quasiparticles lifetime in terms of a charge
vertex in the normal phase. This allows us to study the in-
fluence of the charge vertex singularity on the behavior of
the quasiparticles lifetime around the FS. We find that in a
suitable range of doping, the vertex presents a singularity,
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at a finite wavevector, of the type introduced phenomeno-
logically in reference [18], signalling an instability towards
an ICDW. It is shown that, near the singularity, a lin-
ear behavior of ImΣ(ω) emerges in the crossover regime
between a Fermi liquid at higher doping and low temper-
ature (where ImΣ ∝ ω2) and the quantum-critical regime
where ImΣ ∝ √ω. The crossover between the two limits
is governed by a single parameter, i.e. the inverse squared
of the correlation length, ξ−2 ∼ a(δ − δc), that locates at
a critical doping δ = δc the stripe phase transition.

The organization of the paper is the following. In Sec-
tion 2 we introduce the model and derive an expression
for the quasiparticles lifetime in terms of the charge ver-
tex function. In Section 3 we discuss the results for the
lifetime as a function of the doping and comment on the
deviations from a standard Fermi-liquid behavior, com-
paring with experiments. Finally, we draw the conclusions
in Section 4.

2 Inverse scattering time of quasiparticles
in proximity of a stripe phase

The Hamiltonian of the 2D single-band Hubbard model
generalized with the inclusion of a non-local (long-range)
Coulomb interaction, is given by:

H =
∑
〈i,j〉′,σ

tijc
†
iσcjσ − µ

∑
σ
niσ

+ U
∑
i

ni↑ni↓ +
∑
i,j

Vi,jninj , (1)

where c†iσ(ciσ) is an electron creation (annihilation) oper-
ator with spin σ at site i, tij denotes the hopping up to
next-to-nearest included, µ is the chemical potential, U
and Vi,j represent the local and the long-range Coulomb
interaction, respectively, and ni = (ni↑ + ni↓). Vi,j rep-
resents the Coulombic potential between the electrons on
a two-dimensional square lattice embedded in a three di-
mensional space with a separation d between the plane in
z direction.

The model is treated by a strong-coupling perturbative
approach, based on a Cumulant Expansion (CE) [19,20],
that consists in taking the local-Coulomb term in the
unperturbed Hamiltonian and introducing the non-local
terms as perturbations. This expansion is equivalent to
a nonstandard diagram technique [19–21] that permits to
evaluate the one-particle Green’s function via a Dyson-like
equation.

Within this approach, in a recent paper [22] we have
computed the charge-vertex function of model (1) in the
normal phase to investigate the existence of a charge in-
stability. The analysis at low energy and low-temperature
of the vertex function reveals that when, only the local
Coulomb repulsion is taken into account, a divergence at
the wavevector q = 0 drives the system towards a phase
separation (PS) while an incommensurate charge density
wave (ICDW) develops when nonlocal Coulomb interac-
tions are included. This instability is associated to a stripe

phase. While the stripe formation can be explained by the
vertex singularity at a finite wavevector q 6= 0, a measure
of the violation of the normal FL behavior is provided
by the behavior of the quasiparticle lifetime around the
singularity.

The on-shell lifetime of a quasiparticle τk at T = 0
is related to the imaginary part of the self-energy, and of
course of the total Green’s function, by the relation:

1
τk

= − 1
π

ImΣ(k, εk) = − 1
π

ImG−1(k, εk). (2)

where we have put Gσ(k, εk) = G−σ(k, εk) = G(k, εk).
Within the Cumulant Expansion approach, the one-

particle Green’s function G(k, iωn) is given by

G(k, iωn) =
[G0(iωn) + Z(k, iωn)]

1− t(k)[G0(iωn) + Z(k, iωn)]
, (3)

where G(0)(iωn) is the local-Hubbard Green’s function
and the function Z(k, iωn) contains all the irreducible
graphs with two insertions which cannot be broken into
two parts by cutting a single line hopping, finally t(k) =
−2t(coskx + cos ky) + 4t′ cos kx cos ky. Explicitly,

G(0)(iωn) =
1− 〈n〉
iωn + µ

+
〈n〉

iωn − (U − µ)
, (4)

where 〈n〉 is the averaged on-site density of electrons per
spin.

From the analytic continuation (iωn → ω+iη) of equa-
tion (3) we get

ImG−1(k, ω) =
ImZ(k, ω)

(ReG0(ω) + ReZ(k, ω))2 + (ImZ(k, ω))2
·

(5)

The evaluation of the inverse scattering time is based on
the calculation of real and imaginary part of the func-
tion Z(k, ω). In the approximation in which we neglect
cumulants of order greater than two, the function Z(k, ω)
is diagrammatically shown in Figure 1 and its analytical
expression is the following:

Z(k, iωn) = −2β−1
∑
k′

Γ (kk′, kk′)G(1)(k′)t2k′

+ β−1
∑
k′

Γ (kk′, k′k)G(1)(k′)t2k′ . (6)

Here we have introduced the shorthand notation k =
(k, iωn), and the 2 comes from the spin. G(1)(k) is the
one-particle Green’s function obtained in the lowest order
CE [23] and Γ (kk′, kk′) is the effective interaction between
quasiparticles, i.e. the vertex function. The diagram struc-
ture we have considered is equivalent to a one-loop self-
energy approximation. Graph (a) corresponds to a direct
scattering while graph (b) to an exchange scattering in
which one must take into account only those background
particles which have a spin whose projection coincides
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Fig. 1. Proper self-energy. Graph (a) represents the direct
scattering while (b) the exchange scattering. The wavy line
is the hopping tk, the line straight line represents the one-
particle Green’s function obtained in the lowest order CE and
the square is the effective interaction potential Γ (k, iωn).

with the projection of the impinging particle spin. The
explicit expression of G(1)(k, iωn), is

G(1)(k, iωn) =
G(0)(iωn)

1− t(k)G(0)(iωn)
=
∑

i=1,2

Ai(k)
iωn − εi(k)

,

(7)

where εi(k) (i = 1, 2) is the energy spectrum consisting
of two Hubbard subbands:

ε1,2(k) =
1
2

[(U − 2µ) + t(k)

∓
√

(U − t(k))2 + 4t(k)〈n〉U ], (8)

Ai(k) (i = 1, 2) are the residues at each pole:

A1(k) =
ε1(k)− U(1− 〈n〉)
ε1(k) − ε2(k)

= 1−A2(k). (9)

The vertex Γ (kk′, kk′) is obtained by the summation
of ladder type of diagrams in the particle-hole channel
shown in Figure 2, where the square denotes, as usual, the
Feynman diagrams assembly describing the effective inter-
action of two particles. We neglect the contribution from
the particle-particle channel, i.e. the superconducting fluc-
tuations. The empty square corresponds to the bare ver-
tex function Γ (0)(iωn), whose explicit expression can be
found in reference [22]. These diagrams have the usual
structure of a Random Phase Approximation (RPA) and
can be summed via a Bethe-Salpeter equation [24]. The
difference between the classical RPA and our generalized
RPA consists in the character of the bare vertex that in
our case is a two-particle cumulant instead of a spatially
local non-retarded interaction.

In the approximation in which the effective scattering
potential is a function of the longitudinal transfer momen-
tum only, equation (6) becomes:

Z(k, iωn) = −β−1
∑
ωn′

∑
k′

Γ (k′, iωn′)

×G(1)(k− k′, iωn − iωn′)t2k−k′ . (10)

= + +
 
……... 

Fig. 2. Bethe-Salpeter equation for the effective interaction
in the ladder approximation. The bare square is a second or-
der cumulant Γ 0 describing the local interaction of two parti-
cles. The arrow indicates the direction of increasing time, while
along the vertical direction equal times are considered.

If Vi,j = 0, i.e. in absence of non-local Coulomb repulsion,
the charge vertex is given by [24]:

Γ (k, iωn) = Γ (0)(iωn) + Γ (0)(iωn)Π(k, iωn)Γ (k, iωn),
(11)

where Π(k, iωn) is the polarization insertion

Π(k, iωn) = 2t̃(k) − 2
β

∑
q,iω′n

t2k+qt
2
q

×G(1)(k + q, iωn + iω′n)G(1)(q, iωn), (12)

t̃(k) = 2(cos kx + cos ky) + 4t′2 cos kx cos ky [25] is the
analytic expression for the bubble made up of two hopping
lines only. As shown in reference [22], when we add a long-
range (LR) Coulomb interaction the long-range vertex,
ΓLR, is expressed in terms of the short-range vertex (11),
denoted by ΓSR, by the following relation:

ΓLR(k, iωn) =
Γ (0)(iωn)

1− Γ (0)(iωn) (Π(k, iωn) + V (k))

=
ΓSR(k, iωn)

1− ΓSR(k, iωn)V (k)
· (13)

where V (k) is the Fourier transform of Vi,j , V (k) =
V G(q), V = e2d/(2ε⊥a2) is the Coulombic cou-
pling constant and G(q) = 1√

A2(q)−1
, A(q) =

[ε‖/(ε⊥a2/d2)][(cos(aqx)+cos(aqy)−2)−1], a is the lattice
spacing, d is the separation between the planes along the
z-direction and ε‖(⊥) indicates the dielectric constant par-
allel (perpendicular) to the plane [26]. In the following we
assume typical values of the parameters of copper oxide
superconductors in the normal phase, i.e. d ' 3a, ε⊥ ' 5
and ε‖ ' 30. Hereon we will consider the long-range vertex
only that we simply denote by Γ for brevity.

After the analytic continuation in (10) we obtain that
the retarded Z function is given by:

Z(k, ω) =
∑
k′

∫
dω′

2π
t2k−k′ [nB(ω′)ImΓ (k′, ω′)

×GA(k− k′, ω − ω′)− nF (ω′)

×Γ (k′, ω − ω′)ImGR(k− k′, ω′)], (14)
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where the superscript A(R) refers to the advanced (re-
tarded) Green’s function. The imaginary part of (14) is:

ImZ(k, ω) = −π
∑
k′

∫
dω′

2π
Ak−k′t

2
k−k′ImΓ (k′, ω′)

× [nB(ω′) + nF (εk−k′)]δ(ω − ω′ − εk−k′). (15)

The kernel of the integral (15), can be evaluated by us-
ing the low-energy expression for the vertex function (13).
As we have shown in a recent work [22], in the low-energy
limit we have

Γ (k′, ω′ → 0) ' − 1
Ω(k′)− iγk′ω′

, (16)

where γk′ is the inverse relaxation time of the charge
fluctuation, Ω(k′) goes to zero for k′ = 0 in the case
V (k′) = 0 (local interaction only), while for V (k′) 6= 0,
Ω(k′) has been studied numerically and presents a zero for
k′ = qc 6= 0. As ω′ → 0, the zeros ofΩ(k′) determine com-
pletely the singular behavior of the vertex function. There
are different ways in which Γ can diverge and the trend of
the physical quantities depend strongly on the type of sin-
gularity. In a previous work [22], being interested only in
the stripe formation induced by the long-range Coulomb
interaction, we have computed the critical wavevector qc

along the instability line Γ (k′, 0)−1 = 0, by looking at
the values of qc where V (k′) takes the smallest value [27].
This has lead to a linear type of divergence, i.e. governed
by Ω(k′) ' a + b(k′ − qc), where a depends on doping
and b is a constant.

Here, in order to have a more complete correspondence
with the experimental findings, we are interested to look
for a singularity of Γ which is consistent with a quan-
tum critical behaviour of a Gaussian type [17], Γ (k′, 0) '
−1/(M2+(k′x−qxc)2+(k′y−qyc)2) for k′ → qc. Numerical
results show that for physical values of (U, V, δ) there ex-
ists a value qc such that Ω(k′) ' M(δ) + α(k − qc)2,
where ξ−2 = M(δ) is the mass term, i.e. the inverse
squared of the correlation length and α is a constant. In
our model we find that M is linearly vanishing with dop-
ing, M(δ) ∝ (δ − δc). At k = qc, M is the distance from
the criticality. In Figure 3 we report the values of qc con-
sistent with a quantum critical behavior and in the inset
is shown the direction orthogonal to the stripes at vary-
ing doping for fixed values of the other parameters. We
note that the direction of the stripes depends on doping
similarly to what observed in some neutron scattering ex-
periments [28,29].

Taking into account the expression (16) for the ver-
tex function, the imaginary part of the Z function can be
calculated by:

ImZ(k, ω) =
∫ π/a

−π/a

dk′x
2π

×
∫ π/a

−π/a

dk′y
2π

γk−k′ [ω − εk′ ][nB(ω − εk′) + nF (εk′)]
Ω2(k− k′) + γ2

k−k′ [ω − εk′ ]2
Ak′t

2
k′ .

(17)

d

2.0

1.8

1.6

1.4

1.2

1.0
1.8 2.0

qy

2.2 2.4 2.6 2.8 3.0 3.2
qx

Fig. 3. The squares represent the critical vector qc = (qxc , q
y
c )

at increasing doping δ = (0.1, 0.15, 0.2, 0.25, 0.28, 0.3) from
bottom to top. The other parameters are fixed as t′/t = −0.25,
U/t = 5, and U/V = 5. The inset shows the direction orthogo-
nal to the stripes at increasing doping from bottom to top for
the same values used before.

We perform the calculation of the on the mass-shell
lifetime at T = 0:

ImZ(k, εk) =∫
0≤εk′≤εk

d2k′

(2π)2

γ−1
k−k′ [εk − εk′ ]

Ω̃2(k− k′) + [εk − εk′ ]2
Ak′t

2
k′ , (18)

where we have defined Ω̃(k) = γ−1
k−k′Ω(k). This integral

can be evaluated in the same fashion as in reference [16]
and the details are reported in the Appendix. Namely, the
main contribution to the integral comes from the region in
the k space where the denominator vanishes. For a given
k, the two terms in the denominator do not vanish simul-
taneously unless k′ = k− qc, where qc is the vector of the
critical fluctuations that connects points of the Fermi sur-
face where εk = εk′ = 0 (hot-spots (HS)). The final result
of the integration at the hot-spots (k = kHS) yields:

ImZ(k, εk) 'k'kHS
π
√

2|kHS − qc|γ−1
kHS−qcAkHS−qct

2
kHS−qc

avkHS−qc

√
εk, (19)

where vkHS−qc is the velocity of the electrons. Since in
the low-energy limit ReG0(ω) goes to a constant and
ReZ(k, ω) is a regular function, the behavior of ImZ(k, ω)
determine the behavior of the inverse scattering time of
quasiparticles (5) at the HS as

1
τHS

' √εk. (20)

When M is different from zero, in the small energy
limit (εk �M), it prevents the denominator of (18) from
vanishing and the usual Fermi liquid behavior is recov-
ered 1/τk ∝ ε2k (details are given in the Appendix). In the
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regime εk �M the square-root behavior still holds. This
implies that along the line εk = εk−qc the quantity M de-
termines the energy scale that separates the Fermi liquid
(FL) regime from the non FL one. The maximum viola-
tion of the FL behavior is obtained when M = 0 at the
points where k approaches the Fermi surface.

3 Results

In Figure 4 the inverse scattering time calculated from
equation (18) is shown as a function of the dimensionless
quantity εk/εmax, where εmax is given by the maximum
value of the single-particle dispersion in (8), at varying
M/t and for εk ' 0. We fix the parameters as t′/t = −0.25,
U/t = 5, with the ratio U/V = 5, and leave the hole-
doping δ as a free parameter to change the position of the
Fermi level and the location of the hot spots. For each
fixed doping we determine numerically the value of the
characteristic wave-vector qc and the hot-spots within the
first Brillouin zone as the intersections between the FS
and the four lines ky = ±qc/a ± kx. We let M/t vary in
the range (10−6; 10−1) to explore the crossover between
FL-non-FL. In Figure 4 we see that as M/t is reduced,
the bottom curve (M/t = 10−1) displays a pure Fermi
liquid-behavior , whereas the top curve, corresponding to
M/t = 10−6, displays a square-root non-FL behavior. The
crossover curves are characterized by a linear behavior.
The energy dependence of ImΣ in this region is consis-
tent with recent ARPES data based on the peak width in
Bi2Sr2CaCu2O8+δ [1]. The experiments show that for a
given temperature ImΣ is constant up to some energy. At
larger binding energy, ImΣ scales linearly with ω and is
independent of temperature, with a behavior very differ-
ent from that found in metallic systems [30,31]. We would
like to stress that the same type of results have been pre-
viously obtained in a phenomenological model of electrons
coupled to a fluctuating charge field whose properties are
described by a correlation function of the form (16).

4 Conclusions

By using a strong coupling approach based on a Cumu-
lant Expansion, we have analyzed the influence of a charge
vertex singularity on the quasiparticles lifetime in an ex-
tended single-band Hubbard model to explain the devia-
tion from the normal Fermi liquid behavior observed into
experiments. For physical values of the parameters we
have found that the charge vertex diverges at a wave vec-
tor qc in a way consistent with the existence of a Quantum
Critical Point at finite doping. The results of our analysis
show that deviations from a conventional Fermi liquid ap-
pear in the on-shell inverse scattering time at the points
of the Fermi surface connected by the characteristic wave-
vectors of the critical charge fluctuations (hot-spots). We
have found that the self-energy shows a linear behavior
in the crossover regime induced by the doping, between a
Fermi liquid, at higher doping and low temperature, where

1x10
-4

2x10
-3
4x10

-3
6x10

-3
8x10

-3
1x10

-2

J

ek/emax

1/tk

Fig. 4. The inverse of the scattering time (in arbitrary
units) as a function of εk/εmax at varying M/t in the range
(10−6; 10−1) (from top to the bottom curve) and for εk → 0.
The parameters are fixed as t′/t = −0.25, U/t = 5, and
U/V = 5, while we leave the hole-doping δ as a free parameter
to change the position of the Fermi level and the location of
the hot spots. The bottom curve (M/t = 10−1) displays a pure
Fermi liquid-behavior , whereas the top curve, corresponding
to M/t = 10−6, displays a square-root non-FL behavior.

ImΣ ∝ ω2 and the quantum-critical regime at lower dop-
ing, where ImΣ ∝ √ω. The crossover between the two
limits is governed by the inverse squared of the correlation
length, ξ−2 ∼ a(δ − δc), that locates at δ = δc a quan-
tum critical point. These features are observed in various
ARPES experiments on Bi2212. We would like to stress
the microscopic derivation of our results contrasted to var-
ious phenomenological proposals present in literature. As
a future work we would like to analyze the quasiparticle
spectra to understand the different nature of low-energy
excitations in various parts of the first Brillouin zone and
understand the interplay or coexistence of superconduc-
tivity and stripe phases.

Appendix A: Evaluation of the imaginary part
of Z(k,ω)

In evaluating the integral (18) we use polar coordinates,∫
d2k′ → |k− qc|

∫
dρ
∫

dφ, and along the line k′ =
k− qc we expand the function Ω(k− k′) in the follow-
ing way,

Ω(k− k′) 'M(δ) + a2(|k− qc|2φ2 + ρ2)/2 (A.1)

where a is some constant, φ is the angle between the
vectors k′,k− qc and ρ = |k′| − |k− qc| ' (εk −
εk−qc)/vk−qc , with ρ � |k − qc|, vk−qc is the velocity of
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the electrons at the point k− qc. Using this expansion the
integral (18) becomes:

ImZ(k, εk) '
|kHS − qc|γ−1

kHS−qcAkHS−qct
2
kHS−qc

vkHS−qc

∫ εk

0

d(ρvkHS−qc)

×
∫ φ̄

0

dφ
ρvkHS−qc

(ρvkHS−qc)2 + (M + a2|kHS − qc|2φ2/2)2

=
|kHS − qc|γ−1

kHS−qcAkHS−qct
2
kHS−qc

vkHS−qc

×
∫ ∞

0

dφ log
[
1 +

ε2k
(M + a2|kHS − qc|2φ2/2)2

]
· (A.2)

We evaluate this integral in different regions.
At the critical point M = 0:

ImZ(k, εk) =
|kHS − qc|γ−1

kHS−qcAkHS−qct
2
kHS−qc

vk−qc

√
2εk∫ ∞

0

dθ log
[
1 +

1
((a2|kHS − qc|2θ2)2

]
, (A.3)

where θ = φ/
√

2εk and the upper limit is extended to ∞
to extract the leading behavior such that

ImZ(k, εk) '
π
√

2|kHS − qc|γ−1AkHS−qct
2
kHS−qc

avkHS−qc

√
εk.

(A.4)

This is the result reported in the main text (19).

In the small energy limit (εk �M):

When M is different form zero, it prevents the denom-
inator of (18) from vanishing and the usual Fermi liquid
behavior is recovered 1

τk
∝ ε2k. In fact, the expansion of the

log in the integral (A.2) in the limit εk �M and small φ
gives:

log

[
1 +

ε2k
M

1

1 + a2|kHS−qc|2φ2

2M

]

' log
[
1 +

ε2k
M

(1− a2|kHS − qc|2φ2/2M)
]

' log
[
1 +

ε2k
M2

]
− ε2ka

2|kHS − qc|2φ2

2M2
' ε2k
M2
·(A.5)

Finally, in the regime εk �M the square-root behavior is
recovered.
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